(NREL) / DOE Subcontract with Genencor for "Cellulase Cost Reduction for Bioethanol"

Enzyme Sugar Platform and Advanced Pretreatment Interim Stage Reviews

May 1-2, 2003 Genencor International, Inc.

Improved Low Cost Cellulase for Biomass Conversion

- Project background and strategy
- Progress to date
- What this progress means

Project Background

 National Renewable Energy Laboratory (NREL) / DOE Subcontract with Genencor for "Cellulase Cost Reduction for Bioethanol"

Focus:

- Economically acceptable enzymatic conversion of cellulosic biomass to glucose for fermentation to ethanol or other products
- Renewable fuel and chemical alternative to petroleum
- Goal: 10-Fold reduction in cost of enzymes for biomass conversion
 - Project start date: April 27, 2000
 - Duration: 38 months June 26, 2003

Strategy

- 10X cost reduction goal achievable only by BOTH:
 - Improved production economics (reduced \$/gm enzyme)
 - Improved cellulase performance (reduced gm enzyme/gal EtOH)

Effective cellulase cost
$$\left(\frac{\$}{\text{gal EtOH}}\right) = \left(\frac{\$}{\text{gm enzyme}}\right) \cdot \left(\frac{\text{gm enzyme}}{\text{gal EtOH}}\right)$$

Strategy: Integrated Plan of Action

<u>Production Process</u>

- · Host Engineering
- Fermentation Process Development
- Breakthrough Production Economics
- Product Recovery Manufacturing Economics of Scale

Bottom line

 Genencor has surpassed the NREL/DOE Subcontract 10X goal

 ~12-Fold reduction in cost of enzymes for biomass conversion has been achieved to date

Summary

- Improved production economics (5X)
 - Process and strain enhancements
 - Functional genomics identified many *T. reesei* genes for targeted strain improvement
- Improved Cellulase Performance (2-3X)
 - Functional Genomics identified several novel *T. reesei* cellulase components
 - Improved CBHI proteins engineered with increased activity and stability
 - Other enzyme recruitments

What we developed

- A cellulase enzyme system that targets the future industry of biomass conversion to fermentable sugars / EtOH
- A production organism and a process to produce the enhanced cellulase system

- An enzyme cocktail has been developed which is tailored to dilute acid pretreated corn stover (NREL model process)
- A production strain and system to produce it has been developed
- Enzyme cost per gal EtOH produced (per NREL calculations) is ~12X below existing commercial cellulases
- Projected cost of enzymes for biomass ethanol of \$0.30 - 0.40/gal EtOH (NREL process and conditions)

Effective cellulase cost
$$\left(\frac{\$}{\text{gal EtOH}}\right) = \left(\frac{\$}{\text{gm enzyme}}\right) \cdot \left(\frac{\text{gm enzyme}}{\text{gal EtOH}}\right)$$

- First term enzyme production cost
 - Audited by NREL
- · Second term enzyme performance
 - Enzyme loading (NREL experimentally validated) and calculated yield of EtOH on sugars
- Overall cellulase cost
 - From subcontract metric \$0.40/gal EtOH
 - From 2002 design report \$0.30/gal EtOH (http://www.nrel.gov/docs/fy02osti/32438.pdf)

Effective cellulase cost
$$\left(\frac{\$}{\text{gal EtOH}}\right) \neq \left(\frac{\$}{\text{gm enzyme}}\right) \cdot \left(\frac{\text{gm enzyme}}{\text{gal EtOH}}\right)$$

- First term enzyme production cost
 - Audited by NREL
- · Second term enzyme performance
 - Enzyme loading (NREL experimentally validated) and calculated yield of EtOH on sugars
- Overall cellulase cost
 - From subcontract metric \$0.40/gal EtOH
 - From 2002 design report \$0.30/gal EtOH (http://www.nrel.gov/docs/fy02osti/32438.pdf)

Effective cellulase cost
$$\left(\frac{\$}{\text{gal EtOH}}\right) = \left(\frac{\$}{\text{gm enzyme}}\right) \cdot \left(\frac{\text{gm enzyme}}{\text{gal EtOH}}\right)$$

- First term enzyme production cost
 - Audited by NREL
- Second term enzyme performance
 - Enzyme loading (NREL experimentally validated) and calculated yield of EtOH on sugars
- Overall cellulase cost
 - From subcontract metric \$0.40/gal EtOH
 - From 2002 design report \$0.30/gal EtOH (http://www.nrel.gov/docs/fy02osti/32438.pdf)

Effective cellulase cost
$$(\frac{\$}{\text{gal EtOH}}) = (\frac{\$}{\text{gm enzyme}}) \cdot (\frac{\text{gm enzyme}}{\text{gal EtOH}})$$

- First term enzyme production cost
 - Audited by NREL
- Second term enzyme performance
 - Enzyme loading (NREL experimentally validated) and calculated yield of EtOH on sugars
- Overall cellulase cost
 - From subcontract metric \$0.40/gal EtOH
 - From 2002 design report \$0.30/gal EtOH (http://www.nrel.gov/docs/fy02osti/32438.pdf)

Where do we go from here?

 Still need to go ~3-4X to get to \$0.10/gal EtOH (will be highly process dependant)

This is aggressive but achievable!

